Dylan Dronnier

Research Scientist in Applied Mathematics and Data Science

9 rue Gutenberg, 06000 NICE

₩ 01/04/1994 🕓 (+33) 06 64 43 19 97 🖂 dylan.dronnier@laposte.net 🎧 dylandronnier

in dylandronnier 🝺 0000-0001-8785-142X 😢 https://dylandronnier.xyz

Experience _____

Thales Alenia Space

Research scientis in mathematics and data science

- Develop and apply machine learning techniques to build surrogate models, accelerating computationally intensive engineering processes like design optimization, design space exploration, and sensitivity analysis.
- Explore innovative approaches for designing spacecraft guidance, navigation, and control systems using reinforcement learning, while supervising two interns from École Polytechnique on this project.
- Implement Monte-Carlo Ray Tracing method for radiation heat transfer computation in satellites.

Neuchâtel University

Postdoctoral reseacher

One year fully committed to my research (with no formal teaching duties). I supervised a second-year student from ENS Paris-Saclay during his internship at the mathematical institute. I participated in a workshop on reinforcement learning and collaborated with a researcher specialized in this topic.

Münster university

Research intern

Research intern

Study the mathematical properties of the exclusion process and implemented a Monte-Carlo algorithm with variance reduction in order to compute the so-called self-diffusion matrix.

ONERA

July 2016 - December 2016

Champs-sur-Marne

October 2018 - November 2021

Work on discontinuous Galerkin methods with *a posteriori* error estimates to solve hyperbolic equations describing a multiphasic flows.

Education

École des Ponts

Ph.D. in applied mathematics

- Title: Epidemics models in infinite-dimension and optimal vaccination strategies
- Supervisors: Jean-François Delmas and Pierre-André Zitt
- **Description**: I propose a new way of modelling human contacts relevant to the spread of contagious diseases using mathematical objects coming from graph theory called graphons. I study the dynamic and control of epidemics with this new perspective.
- Manuscript: www.hal.science/tel-03541695v1

Sorbonne Université (ex Université Paris VI)

MASTER OF SCIENCE, WITH HONORS. Majored in probability theory and statistics.

École des Ponts

ENGINEER'S DEGREE, WITH HONORS. Majored in mathematics and computer science. Paris September 2017 - August 2018

Champs-sur-Marne September 2014 - August 2018

Neuchâtel

Cannes

September 2023 - Now

January 2022 - March 2023

Münster

Châtillon

January 2017 - July 2017

Skills _____

Programming	Python (advanced), Rust (advanced), C++ (intermediate), OCaml (intermediate)
ML/DL library	Jax, Flax, Scikit-learn, Numpy
OS/Software	Strong knowledge of GNU/Linux, Git, Docker
Languages	English (fluent), French (fluent)

Miscellaneous

- Takeda Poster Award for Mathematical Epidemiology for my presentation at the Society for Mathematical Biology Annual Meeting held on June 2021.
- "Territoires" prize for my PhD thesis awarded by *la communauté d'agglomération Paris-Vallée de la Marne*.
- Finalist of the competition *Ma thèse en 180 secondes* (French equivalent of Three Minutes Thesis).

List of publications _____

Preprints

[1] J.-F. Delmas, D. Dronnier, and P.-A. Zitt, "Targeted Vaccination Strategies for an Infinite-dimensional SIS model," *arXiv*, Aug. 2021, doi: 10.48550/arXiv.2103.10330.

[2] J.-F. Delmas, D. Dronnier, and P.-A. Zitt, "Vaccinating according to the maximal endemic equilibrium achieves herd immunity," *arXiv*, Nov. 2022, doi: 10.48550/arXiv.2211.15463.

[3] J.-F. Delmas, D. Dronnier, and P.-A. Zitt, "Optimal vaccination: Cordons sanitaires, reducible population and optimal ray," *arXiv*, Dec. 2022, doi: 10.48550/arXiv.2209.07381.

Journal articles

[4] J.-F. Delmas, D. Dronnier, and P.-A. Zitt, "The effective reproduction number: Convexity, concavity and invariance," *Journal of the European Mathematical Society*, 2024, doi: 10.4171/JEMS/1431.

[5] J.-F. Delmas, D. Dronnier, and P.-A. Zitt, "Optimal vaccination: various (counter) intuitive examples," *Journal of Mathematical Biology*, vol. 86, no. 2, 2023, doi: 10.1007/s00285-022-01858-5.

[6] J.-F. Delmas, D. Dronnier, and P.-A. Zitt, "An infinite-dimensional metapopulation SIS model," *Journal of Differential Equations*, vol. 313, pp. 1–53, 2022, doi: 10.1016/j.jde.2021.12.024.

[7] D. Dronnier and F. Renac, "Adjoint-Based Adaptive Model and Discretization for Hyperbolic Systems with Relaxation," *Multiscale Modeling & Simulation*, vol. 17, no. 2, pp. 750–772, 2019, doi: 10.1137/18M120676X.