Infinite-dimensional epidemic models and optimal vaccination strategies

Dylan Dronnier

PhD advisors: Jean-François Delmas and Pierre-André Zitt

École des Ponts ParisTech

November 26, 2021

Introduction

- I-D SIS model
- The Threshold Theorem
- Heterogeneity of the contacts
 - Metapopulation model
 - An infinite-dimensional SIS model
- The problem of optimal vaccine allocation
 - Motivation
 - Properties of the problem

Examples

- Assortativity and disassortativity
- Constant degree kernel

Table of Contents

- 1-D SIS model
- The Threshold Theorem
- Heterogeneity of the contacts
 - Metapopulation model
 - An infinite-dimensional SIS model

The problem of optimal vaccine allocation

- Motivation
- Properties of the problem

4 Examples

- Assortativity and disassortativity
- Constant degree kernel

1-D SIS model

Principles of the SIS model

Susceptible \rightarrow Infected \rightarrow Susceptible

Infection: Law of mass action (Kermack-McKendrick 1927)

Susceptible individual gets infected at rate proportional to the concentration of infected people in the population.

Recovery

Infected individual recovers at constant rate.

Example: flu, common cold, gonorrhea...

Mathematical formulation of the 1-D SIS Model

The population is constant and is assigned to compartments S + I = 1 with:

- *S*(*t*): proportion of susceptible individuals at time *t*.
- *I*(*t*): proportion of infected individuals at time *t*.

Parameters

 $\beta > 0$: transmission rate, $\gamma > 0$: recovery rate.

Evolution equation

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} = -S\beta I + \gamma I, \\ \\ \frac{\mathrm{d}I}{\mathrm{d}t} = S\beta I - \gamma I. \end{cases}$$

Long-time behavior of the solution

Suppose I(0) > 0. Then:

• if
$$R_0 \le 1$$
: $\lim_{t \to \infty} I(t) = 0$,

• if
$$R_0 > 1$$
: $\lim_{t \to \infty} I(t) := I^* = 1 - 1/R_0 > 0$.

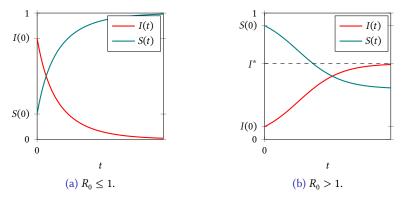


Figure: Convergence of the 1-D SIS model.

1-D SIS model with vaccination

At t = 0, a proportion V of the population is vaccinated.

We assume that vaccinated individuals are fully immunized to the disease.

The population is assigned to compartments S + I + V = 1 with:

- *S*(*t*): proportion of susceptible individuals at time *t*.
- *I*(*t*): proportion of infected individuals at time *t*.
- *V*: proportion of vaccinated/immunized individuals, constant over time.

Evolution equation

$$\frac{\mathrm{d}I}{\mathrm{d}t} = (1 - V - I)\beta I - \gamma I.$$

The Threshold Theorem

The Herd Immunity Threshold

Definition

The Herd Immunity Threshold is defined as the critical proportion of the population that is needed in order to eradicate the disease.

HIT = $1 - 1/R_0$.

Disease	Main Transmission mode	R_0	HIT
Measle (Rougeole)	Aerosol	12-18	92-95%
Varicella	Aerosol	10-12	90-92%
Mumps (Oreillons)	Respiratory droplets	10-12	90-92%
Polio	Fecal-oral route	5-7	80-86%
Covid-19	Aerosol	3-6	65-85%
Ebola	Body fluids	1.5-2.5	30-60%

Table: Values of R_0 and HIT of well-known diseases

Table of Contents

Introduction

- 1-D SIS model
- The Threshold Theorem

Heterogeneity of the contacts

- Metapopulation model
- An infinite-dimensional SIS model

The problem of optimal vaccine allocation

- Motivation
- Properties of the problem

Examples

- Assortativity and disassortativity
- Constant degree kernel

Heterogeneity of the population

Individuals do not mix homogeneously

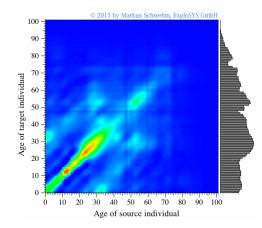


Figure: Contact matrix in an european population (Mossong et al. 2008)

The finite-dimensional SIS model

Lajmanovich and Yorke 1976

Metapopulation assumption

- The population is divided into N subpopulations labeled $\{1, 2, ..., N\}$.
- Individuals within a same subpopulation share the same characteristics.

Parameters

• $\mu_i \in (0, 1)$: proportion of individuals in subpopulation *i*.

$$\sum_{i=1}^{N} \mu_i = 1.$$

- $\beta_{ij} \ge 0$: transmission rate of the infection from an individual in subpopulation *j* to an individual in subpopulation *i*.
- $\gamma_i > 0$: is the recovery rate the individuals in subpopulation *i*.

Subpopulation *i* is assigned with compartments $S_i + I_i + V_i$ with:

- $S_i(t)$: proportion of susceptible individuals in subpop. *i* at time *t*.
- *I_i(t)*: proportion of infected individuals in subpop. *i* at time *t*.
- V_i: proportion of vaccinated individuals in subpop. *i*, constant over time.

Evolution equation

$$\frac{\mathrm{d}I_i}{\mathrm{d}t} = (1 - V_i - I_i) \sum_{j=1}^N \beta_{ij} I_j \mu_j - \gamma_i I_i.$$

Theorem (Lajmanovich and Yorke 1976)

Suppose $I(0) \neq (0, 0, ..., 0)$ *.*

• If
$$R_e(V) \le 1$$
: $\lim_{t\to\infty} I(t) = (0, 0, \dots, 0)$.

• If β is irreducible and $R_e(V) > 1$: there exists an unique $I^* \in (0, 1]^N$ such that $\lim_{t\to\infty} I(t) = I^*$.

Graphon theory

Lovász 2012; Borgs et al. 2018

Question

How to represent the population when $N \rightarrow \infty$?

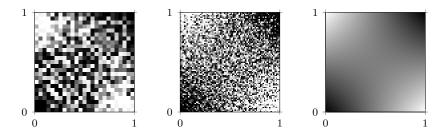


Figure: Convergence of a sequence of matrices to a kernel.

Infinite dimensional SIS model

Parameters

 $(\Omega, \mathcal{F}, \mu):$ probability space representing the population.

 $k: \Omega \times \Omega \rightarrow \mathbb{R}_+$: kernel representing the transmission rates between the individuals in the population.

 $\gamma:\ \Omega\to\mathbb{R}_+:$ positive function representing the recovery rate of the individuals

For $x \in \Omega$:

- v(x): proportion of *x*-type individuals who are vaccinated,
- *u*(*t*, *x*): proportion of *x*-type individuals who are infected at time *t*.

Evolution equation

$$\partial_t u(t,x) = (1 - v(x) - u(t,x)) \int_0^1 k(x,y) u(t,y) \, \mu(\mathrm{d}y) - \gamma(x) u(t,x).$$

Notation

$$\mathbf{k} : (x, y) \mapsto \frac{k(x, y)}{\gamma(y)}$$

Definition (Next-generation operator with vaccination) The integral operator associated to the kernel $(x, y) \mapsto \mathbf{k}(x, y)(1 - v(y))$ is

$$T_{\mathbf{k}(1-\nu)}(g) : x \mapsto \int_{\Omega} \frac{k(x,y)}{\gamma(y)} (1-\nu(y))g(y)\,\mu(\mathrm{d} y).$$

Definition

The kernel **k** is said to be connected if for all $A \in \mathcal{F}$,

$$\int_{A \times A^{\complement}} \mathbf{k}(x, y) \mu(\mathrm{d}x) \mu(\mathrm{d}y) = 0 \implies \mu(A) \in \{0, 1\}.$$

Theorem (Delmas, DD, Zitt)

Suppose an integrability condition on **k** and $\int_{\Omega} u_0(x) \mu(dx) > 0$.

• If $R_e(v) \leq 1$, then, for all $x \in \Omega$:

 $\lim_{t\to+\infty}u(t,x)=0.$

• If $R_e(v) > 1$ then, there exists a greatest equilibrium that is denoted $u^* = u_v^*$ and called the endemic state and satisfies:

$$\int_{\Omega} u^*(x)\,\mu(\mathrm{d} x) > 0.$$

If, besides, **k** is connected, then u^* is positive almost surely and globally stable, i.e., for all $x \in \Omega$:

$$\lim_{t\to +\infty} u(t,x) = u^*(x).$$

Comparison to other results and proof in the literature

Ruan and Xiao 2004; Feng, Huang, and Castillo-Chavez 2005; Thieme 2011; ...

Usual assumptions in the literature

- $\Omega \subset \mathbb{R}^d$ compact and μ is the Lebesgue measure \rightarrow general probability space.
- *k* is continuous and bounded away from 0
 → connectedness and integrability condition on k.
- γ is bounded away from 0
 - $\rightarrow \gamma$ positive.

Strategy for the proof

- Adapt the theory of order preserving system (Hirsch and Smith 2006).
- $T_{\mathbf{k}(1-\nu)}$ is power compact.
- Find non-decreasing solution closed to the disease free equilibrium (thanks to the Krein-Rutman theorem).

Table of Contents

Introduction

- 1-D SIS model
- The Threshold Theorem

Heterogeneity of the contacts

- Metapopulation model
- An infinite-dimensional SIS model

The problem of optimal vaccine allocation

- Motivation
- Properties of the problem

Examples

- Assortativity and disassortativity
- Constant degree kernel

The threshold theorem in the infinite-dimensional setting Overall proportion of vaccinated individuals:

$$C(v) = \int_{\Omega} v(x) \, \mu(\mathrm{d}x).$$

If the population is vaccinated uniformly at level $c(v(x) = c, \forall x)$ then:

$$R_e(\nu) = \rho(T_{k(1-c)/\gamma}) = (1-c)\rho(T_{k/\gamma}) = (1-c)R_0.$$

Theorem (Threshold theorem)

Vaccinating a proportion $1 - 1/R_0$ *of individuals uniformly is enough to reach* herd immunity!

Question

Is it possible to reach herd immunity (*i.e.*, $R_e(v) = 1$) with a proportion C(v)of vaccinated individuals smaller than $1 - 1/R_0$?

Motivation

Vaccinating according to the endemic state

Proposition (Delmas, DD, Zitt)

Suppose $R_0 > 1$. Vaccinating according to the endemic state u_0^* (greatest equilibrium when nobody is vaccinated) is critical:

$$R_e(u_0^*)=1.$$

Corollary

Herd immunity can be reached with a proportion of vaccinated individuals

$$C(u_0^*) = \int_{\Omega} u_0^*(x) \,\mu(\mathrm{d}x).$$

Questions

- Is it possible to reach herd immunity with less than $C(u_0^*)$?
- Compare $C(u_0^*)$ and $1 1/R_0$.

Optimal allocation of vaccine doses

If the society has only a limited quantity of vaccine, the decision-maker could try to solve:

$$\begin{cases} \text{Minimize:} & R_e(v) \\ \text{subject to:} & C(v) = c. \end{cases}$$
(1)

We will also be interested in:

Maximize:
$$R_e(v)$$

subject to: $C(v) = c.$ (2)

The set of vaccination strategies:

 $\Delta = \{ v : \Omega \to [0, 1] \text{ mesurable} \}.$

Short topological digression

Weak topology on Δ :

 $v_n \xrightarrow{w} v$ if, for all $g \in L^{\infty}(\Omega)$:

$$\lim_{n \to +\infty} \int_{\Omega} g(x) v_n(x) \, \mathrm{d}x = \int_{\Omega} g(x) v(x) \, \mathrm{d}x.$$

- Δ is compact (Banach-Alaoglu theorem).
- The function $C : \Delta \rightarrow [0, 1]$ is continuous and increasing.

Lemma (Delmas, DD, Zitt)

The function R_e : $\Delta \rightarrow [0, R_0]$ is continuous, homogeneous, decreasing.

The proof is based on a result by Anselone 1971 which proves the convergence of the spectra of a **collectively compact** and **strongly convergent** sequence of operators.

Corollary

- For all $c \in [0, 1]$, there exist solution to Problem (1) and a solution to Problem (2) for a cost C(v) = c.
- If $\mathbf{k} > 0$, the solutions to Problem (1) are Pareto optimal.
- If k is connected, the solutions to Problem (2) are anti-Pareto optimal.

$$R_{e}^{\star}(c) = \max\{R_{e}(v) : v \in \Delta, C(v) = c\}.$$

$$R_{e^{\star}}(c) = \min\{R_{e}(v) : v \in \Delta, C(v) = c\},$$

$$\mathbf{F} = \{(C(v), R_{e}(v)) : v \in \Delta\}.$$

Corollary

The set of possible outcomes is simply connected:

 $\mathbf{F} = \{(c,r) : c \in [0,1], R_{e^{\star}}(c) \le r \le R_{e}^{\star}(c)\}.$

Another way to measure the efficacy of a strategy

The overall proportion of infected individuals in the endemic state is

$$I^*(\nu) = \int_{\Omega} u_{\nu}^*(x) \, \mu(\mathrm{d} x).$$

Lemma (Delmas, DD, Zitt)

The function I^* : $\Delta \rightarrow [0, R_0]$ is continuous, subhomogeneous and decreasing.

The proof is based on the continuity of R_e and the fact that u_0^* is the only equilibrium that satisfies $R_e(u_0^*) = 1$ when $R_0 > 1$.

Consequence

There exist solutions to Problems (1) and (2) where R_e is replaced by I^* .

Solving a conjecture by Hill and Longini Hill and Longini 2003

Recall that:

- $\mathbf{k}(x, y) \ge 0$, for all $x, y \in \Omega$.
- if $\mathbf{k} \in L^2(\Omega \times \Omega)$, then $T_{\mathbf{k}}$ is Hilbert-Schmidt. In particular $T_{\mathbf{k}}$ is compact.

Hence, $R_0 = \rho(T_k)$ is an eigenvalue of T_k (Krein-Rutman theorem).

Theorem (Delmas, DD, Zitt)

Suppose **k** symmetric (i.e., $\mathbf{k}(x, y) = \mathbf{k}(y, x)$ almost-surely) and $\mathbf{k} \in L^2(\Omega \times \Omega)$.

- If $\sigma(T_k) \subset \mathbb{R}_+$, then R_e is convex.
- If **k** is connected and $\sigma(T_{\mathbf{k}}) \setminus \{R_0\} \subset \mathbb{R}^-$, then R_e is concave.

Remarks:

- If R_e is convex, then $R_{e\star}$ is convex.
- If R_e is concave, then R_e^* is concave and **k** is connected.

Table of Contents

Introduction

- 1-D SIS model
- The Threshold Theorem

Heterogeneity of the contacts

- Metapopulation model
- An infinite-dimensional SIS model

The problem of optimal vaccine allocation

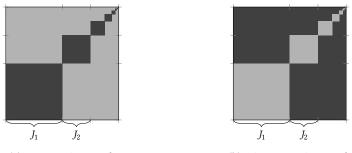
- Motivation
- Properties of the problem

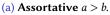
Examples

- Assortativity and disassortativity
- Constant degree kernel

A toy model for studying the effect of assortativity $\Omega = [0, 1]$ and μ is the Lebesgue measure. Consider the kernel:

$$\mathbf{k} = a \sum_{i} \mathbb{1}_{J_i \times J_i} + b \sum_{i \neq j} \mathbb{1}_{J_i \times J_j}.$$





(b) **Disassortative** *a* < *b*.

Figure: Grayplot of the kernels.

Proposition (Delmas, DD, Zitt)

- If a < b (disassortative), then $\mathbb{1}_{[1-c,1)}$ of cost c is Pareto optimal.
- If a > b (assortative), then $\mathbb{1}_{[1-c,1]}$ of cost c is anti-Pareto optimal.

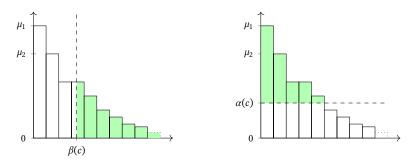
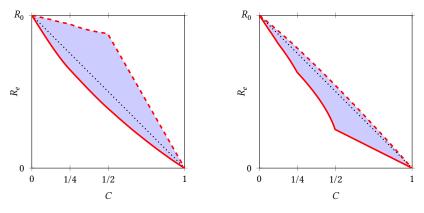


Figure: Representation of the optimal solutions.

Representation of set of outcomes when $\mu_n = 2^{-n}$ for $n \ge 1$



(b) The disassortative case.

Figure: Set of outcomes F.

Uniform strategies for constant degree kernels

Definition

k is a constant degree kernel if $x \mapsto \int \mathbf{k}(x, y) dy$ and $x \mapsto \int \mathbf{k}(y, x) dy$ are constant.

Proposition

Let k be a constant degree kernel.

- $\nabla R_e(v)$ is constant when $v \equiv c \in [0, 1]$.
- If R_e is convex, then the uniform vaccination strategies are Pareto optimal.
- If R_e is concave, then the uniform vaccination strategies are anti-Pareto optimal.

The proof is based on Kloeckner 2019.

Symmetric regular kernel of rank 2

 $\Omega = [0, 1)$ equipped with μ the Lebesgue measure. Consider the kernels:

$$\mathbf{k}^+(x, y) = R_0 + \theta(x)\theta(y),$$

$$\mathbf{k}^-(x, y) = R_0 - \theta(x)\theta(y).$$

where θ : $[0,1] \rightarrow \mathbb{R}$ is increasing and satisfies the following conditions:

$$\theta(x) = -\theta(1-x) \quad \forall x \in [0,1], \qquad \theta(1)^2 \le R_0.$$

We have:

$$\sigma(T_{\mathbf{k}^+}) = \{R_0, \|\theta\|_2^2, 0\}, \quad \text{and} \quad \sigma(T_{\mathbf{k}^-}) = \{R_0, -\|\theta\|_2^2, 0\}.$$

Proposition (Solution for the kernel $k^+ = R_0 + \theta \otimes \theta$)

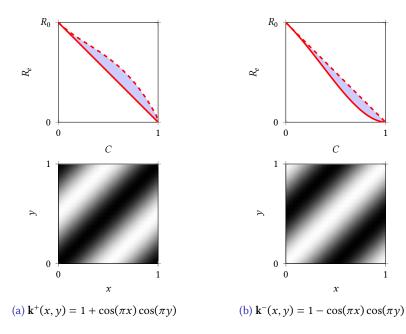
- For all $c \in [0, 1]$ the uniform vaccination strategies are Pareto optimal.
- For all c ∈ [0, 1], the strategies 1_{[0,c)} and 1_{[1-c,1)} of cost c are anti-Pareto optimal.

Consequence

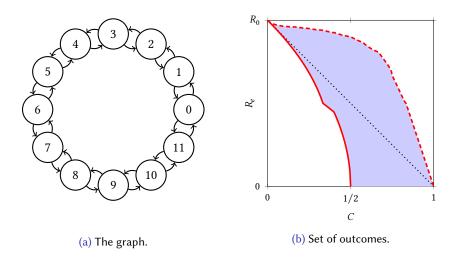
For the kernel \mathbf{k}^+ , we need at least HIT = $1 - 1/R_0$ to reach herd immunity, even though the model is heterogeneous!

Proposition (Solution for the kernel $k^- = R_0 - \theta \otimes \theta$)

- For all $c \in [0, 1]$, the strategies $\mathbb{1}_{[0,c)}$ and $\mathbb{1}_{[1-c,1)}$ of cost c are Pareto optimal.
- For all $c \in [0, 1]$ the uniform vaccination strategies are anti-Pareto optimal.



Uniform vaccination strategies are not always optimal.



The Pareto optimal solution cannot be parametrized greedily.

Future research

- Monotonic kernels (*e.g.*, proportionate mixing/configuration model).
- Algorithm to compute the Pareto optimal solutions (greedy algorithm) and parametrization of the set of Pareto optimal strategies (gradient flow in *L*¹).
- Convergence of the SIS interacting particles system to the infinite-dimensional model?
- What happens when the graph of contacts is not dense?

A monotonic model

