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11D 515 model
Principles of the SIS model

Susceptible — Infected — Susceptible J

Infection: Law of mass action (Kermack-McKendrick 1927)

Susceptible individual gets infected at rate proportional to the
concentration of infected people in the population.

Recovery

Infected individual recovers at constant rate.

Example: flu, common cold, gonorrhea...
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Mathematical formulation of the 1-D SIS Model
The population is constant and is assigned to compartments S + I = 1 with:

@ S(t): proportion of susceptible individuals at time ¢.

@ I(t): proportion of infected individuals at time t.

Parameters

B > 0: transmission rate, y > 0: recovery rate.

Evolution equation

ds

D = _SBI+yI,

dl _ cpr
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Long-time behavior of the solution
Suppose 1(0) > 0. Then:

o if Ry < 1: limy_,, I(t) = 0,

@ if Ry > 1: limy_,, I(t) :=1"=1—1/Ry > 0.

1 1
—I(t) S(0)
1(0) | —s® |
r
S(0) 1
1(0)
0 0
0 0
t t
(@) R, < 1. (b) Ry > 1.

Figure: Convergence of the 1-D SIS model.
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1-D SIS model with vaccination

At t = 0, a proportion V of the population is vaccinated.
We assume that vaccinated individuals are fully immunized to the disease.

The population is assigned to compartments S+ I +V = 1 with:
@ S(1): proportion of susceptible individuals at time ¢.
@ I(t): proportion of infected individuals at time t.

@ V: proportion of vaccinated/immunized individuals, constant over time.

Evolution equation

dI
S - (1-V-=DBI -yl
p ( B —y
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The Herd Immunity Threshold

Definition

The Herd Immunity Threshold is defined as the critical proportion of the

population that is needed in order to eradicate the disease.

HIT =1 - 1/R,.

Disease Main Transmission mode Ry HIT
Measle (Rougeole) Aerosol 12-18 | 92-95%
Varicella Aerosol 10-12 | 90-92%
Mumps (Oreillons) Respiratory droplets 10-12 | 90-92%
Polio Fecal-oral route 5-7 | 80-86%
Covid-19 Aerosol 3-6 65-85%
Ebola Body fluids 1.5-2.5 | 30-60%

Table: Values of R, and HIT of well-known diseases
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Metapopuation mdel
Heterogeneity of the population

Individuals do not mix homogeneously

© 2015 by Markus Schwehm, ExploSYS GmbH

Age of target individual

0 10 20 30 40 50 60 70 80 90 100
Age of source individual

Figure: Contact matrix in an european population (Mossong et al. 2008)
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Heterogeneity of the contacts Metapopulation model

The finite-dimensional SIS model
Lajmanovich and Yorke 1976
Metapopulation assumption
@ The population is divided into N subpopulations labeled {1, 2, ..., N}.

@ Individuals within a same subpopulation share the same
characteristics.

Parameters

@ y; € (0,1): proportion of individuals in subpopulation i.

N
Z K =1
i=1

@ f;j > 0: transmission rate of the infection from an individual in
subpopulation j to an individual in subpopulation i.

@ y; > 0: is the recovery rate the individuals in subpopulation i.
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Heterogeneity of the contacts Metapopulation model

Subpopulation i is assigned with compartments S; + I, + V; with:
@ Si(t): proportion of susceptible individuals in subpop. i at time ¢.
@ I(t): proportion of infected individuals in subpop. i at time t.

@ V;: proportion of vaccinated individuals in subpop. i, constant over time.

Evolution equation

di;

N
pri (A=Vi= 1) Y Byl — vk
J=1

Theorem (Lajmanovich and Yorke 1976)
Suppose 1(0) = (0,0, ...,0).
@ IfR,(V) < 1: limy_, I(t) = (0,0,...,0).

o If Bis irreducible and R,(V') > 1: there exists an unique I € (0, 1IN such
that lim;_,., I(t) = I".
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Heterogeneity of the contacts An infinite-dimensional SIS model

Graphon theory

Lovasz 2012; Borgs et al. 2018

Question

How to represent the population when N — o0?

Figure: Convergence of a sequence of matrices to a kernel.
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Heterogeneity of the contacts An infinite-dimensional SIS model

Infinite dimensional SIS model
Parameters
(Q, F, p): probability space representing the population.

k: QxQ — R,: kernel representing the transmission rates between the
individuals in the population.

Yy : Q — R,: positive function representing the recovery rate of the
individuals

For x € Q:

@ v(x): proportion of x-type individuals who are vaccinated,

@ u(t, x): proportion of x-type individuals who are infected at time t.

Evolution equation

1

opu(t, x) = (1 — v(x) — u(t, x)) J k(x, y)u(t, y) p(dy) — y()ult, x).

0
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Heterogeneity of the contacts An infinite-dimensional SIS model

Notation
k 5
ki (ny) o (x,y)

r(y) )
Definition (Next-generation operator with vaccination)
The integral operator associated to the kernel (x, y) — k(x, y)(1 —v(y)) is

‘ ( ,Y)
Te(1-)(8) = x = 0 — (1 =v(»)g(y) p(dy).
V.

Definition
The kernel k is said to be connected if for all A € &,

j KCx, y)u(dn)p(dy) =0 — 4(A) € {0, 1}
AxAC

15/35



Heterogeneity of the contacts An infinite-dimensional SIS model

Theorem (Delmas, DD, Zitt)
Suppose an integrability condition onk and | ug(x) p(dx) > 0.
@ IfR,(v) <1, then, for all x € Q:

lim u(t,x) = 0.

t—+o00

@ IfR,(v) > 1 then, there exists a greatest equilibrium that is denoted
u” = u, and called the endemic state and satisfies:

J u*(x) p(dx) > 0.
Q

If, besides, k is connected, then u* is positive almost surely and globally
stable, i.e., for all x € Q:

lim u(t, x) = u™(x).
t—+o00

16/35



Heterogeneity of the contacts An infinite-dimensional SIS model

Comparison to other results and proof in the literature
Ruan and Xiao 2004; Feng, Huang, and Castillo-Chavez 2005; Thieme 2011; ...

Usual assumptions in the literature
e QCR? compact and y is the Lebesgue measure
— general probability space.

@ kis continuous and bounded away from 0
— connectedness and integrability condition on k.

@ yis bounded away from 0
— y positive.

Strategy for the proof
@ Adapt the theory of order preserving system (Hirsch and Smith 2006).
@ Ti(1-y) is power compact.

@ Find non-decreasing solution closed to the disease free equilibrium
(thanks to the Krein-Rutman theorem).
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The problem of optimal vaccine allocation Motivation

The threshold theorem in the infinite-dimensional setting
Overall proportion of vaccinated individuals:

Clv) = JQ v(x) p(dx).
If the population is vaccinated uniformly at level ¢ (v(x) = ¢, Vx) then:

R(v) = p(Tk(1-¢)/y) = (1 — ©)p(Tisy) = (1 — ©)Ry.

Theorem (Threshold theorem)

Vaccinating a proportion 1 — 1/ Ry of individuals uniformly is enough to reach
herd immunity!

Question

Is it possible to reach herd immunity (i.e., R,(v) = 1) with a proportion C(v)
of vaccinated individuals smaller than 1 —1/R; ?
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The problem of optimal vaccine allocation Motivation

Vaccinating according to the endemic state
Proposition (Delmas, DD, Zitt)

Suppose Ry > 1. Vaccinating according to the endemic state ug (greatest
equilibrium when nobody is vaccinated) is critical:

R.(up) = 1. )
Corollary
Herd immunity can be reached with a proportion of vaccinated individuals
Cluy) = J ugy (x) p(dx).
Q v

Questions
@ Is it possible to reach herd immunity with less than C(ug) ?
@ Compare C(uy) and 1 — 1/R,.
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The problem of optimal vaccine allocation Properties of the problem

Optimal allocation of vaccine doses

If the society has only a limited quantity of vaccine, the decision-maker
could try to solve:

Minimize: R,(v) M
subjectto: C(v) =c.

We will also be interested in:
Maximize: R, (v) )
subjectto: C(v) =c.

The set of vaccination strategies:

A={v: Q—[0,1] mesurable}.
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Properties o the problem
Short topological digression

Weak topology on A:

Y v if, for all g € L*(Q):

lim JQ gOvp(x) dx = J'Q glv(x) dx.

n—+oo

@ A is compact (Banach-Alaoglu theorem).

@ The function C : A — [0, 1] is continuous and increasing.

Lemma (Delmas, DD, Zitt) J

The function R, : A — [0, Ry] is continuous, homogeneous, decreasing.

The proof is based on a result by Anselone 1971 which proves the
convergence of the spectra of a collectively compact and strongly
convergent sequence of operators.
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The problem of optimal vaccine allocation Properties of the problem
Corollary

@ Forallc € [0,1], there exist solution to Problem (1) and a solution to
Problem (2) for a cost C(v) = c.

@ [fk > 0, the solutions to Problem (1) are Pareto optimal.

@ Ifk is connected, the solutions to Problem (2) are anti-Pareto optimal.

R} (c) =max{R,(v) : veA, C(v) =c}.
R..(c) = min{R,(v) : v€EA, C(v) =c},
F ={(C(v),R,(v)) : veAL

Corollary

The set of possible outcomes is simply connected:

F={(cr) : c€[0,1], R..(c) <r < R;(c)}
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The problem of optimal vaccine allocation Properties of the problem

Another way to measure the efficacy of a strategy

The overall proportion of infected individuals in the endemic state is

1) = JQ w4 (6) ().

Lemma (Delmas, DD, Zitt) J

The function I* : A — [0, Ry]| is continuous, subhomogeneous and decreasing.

The proof is based on the continuity of R, and the fact that u; is the only
equilibrium that satisfies R (u5) = 1 when Ry > 1.

Consequence J

There exist solutions to Problems (1) and (2) where R, is replaced by I*.
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The problem of optimal vaccine allocation Properties of the problem

Solving a conjecture by Hill and Longini
Hill and Longini 2003

Recall that:
@ k(x,y) >0, forall x,y € Q.
e ifk € L2(Qx Q), then Ty is Hilbert-Schmidt. In particular Ty is compact.

Hence, Ry = p(Ty) is an eigenvalue of Ty (Krein-Rutman theorem).

Theorem (Delmas, DD, Zitt)

Suppose k symmetric (i.e., k(x, y) = k(y, x) almost-surely) andk € L*(Q x Q).
o Ifo(Ty) C Ry, then R, is convex.
o Ifk is connected and o(Ty,)\{Ry} C R™, then R, is concave.

Remarks:
o If R, is convex, then R,, is convex.

@ If R, is concave, then R} is concave and k is connected.
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Assortativity and disassortativity
A toy model for studying the effect of assortativity

Q =[0,1] and p is the Lebesgue measure. Consider the kernel:

k:az]l]ix]i+bzl]ix]j'
i

i#j

I J2 N L

(a) Assortative a > b. (b) Disassortative a < b.

Figure: Grayplot of the kernels.
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Proposition (Delmas, DD, Zitt)

@ Ifa < b (disassortative), then 1_ 1) of cost c is Pareto optimal.

@ Ifa> b (assortative), then 1[;_ 1) of cost c is anti-Pareto optimal.

o

K2+

JENE

H2 4

Figure: Representation of the optimal solutions.
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Representation of set of outcomes when p, = 27" forn > 1
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(a) The assortative case. (b) The disassortative case.

Figure: Set of outcomes F.
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Uniform strategies for constant degree kernels

Definition

k is a constant degree kernel if x = [ k(x,y)dyand x — [ k(y, x)dyare
constant.

Proposition
Letk be a constant degree kernel.
@ VR,(v) is constant whenv = ¢ € [0,1].
@ If R, is convex, then the uniform vaccination strategies are Pareto optimal.

@ If R, is concave, then the uniform vaccination strategies are anti-Pareto
optimal.

The proof is based on Kloeckner 2019.
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Symmetric regular kernel of rank 2

Q = [0,1) equipped with p the Lebesgue measure.
Consider the kernels:

k*(x,y) = Ry + 0(x)0(y),
k™ (x, y) = Ry — 0(x)0(y).

where 0 : [0,1] - Ris increasing and satisfies the following conditions:

0(x) = —-0(1 —x) vxe[0,1], 6(1)* < R,.

We have:

o(Ti+) = {Ro, 10]3.0},  and  o(Ti) = {Ro, [0l , 0}.
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Proposition (Solution for the kernel k* = R, + 6 ® 0)
@ forallc € [0, 1] the uniform vaccination strategies are Pareto optimal.

@ Forallc € [0,1], the strategies 1[y ) and 1[;_ 1) of cost c are anti-Pareto
optimal.

Consequence

For the kernel k*, we need at least HIT = 1 — 1/R, to reach herd immunity,
even though the model is heterogeneous!

Proposition (Solution for the kernel k™ = R, — 6 ® 0)

@ Forallc € [0, 1], the strategies 1[o ) and 1[;_ 1) of cost c are Pareto
optimal.

@ Forallc € [0, 1] the uniform vaccination strategies are anti-Pareto
optimal.
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(a) k*(x,y) = 1 + cos(rx) cos(ry) (b) k™ (x,y) = 1 — cos(rrx) cos(ry)
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Uniform vaccination strategies are not always optimal.

Ry

_____
-_—
-

0
(a) The graph.

1)2

L e
-

c
(b) Set of outcomes.
The Pareto optimal solution cannot be parametrized greedily.
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End of the talk

Future research

@ Monotonic kernels (e.g., proportionate mixing/configuration model).

@ Algorithm to compute the Pareto optimal solutions (greedy algorithm)
and parametrization of the set of Pareto optimal strategies (gradient
flow in L1).

@ Convergence of the SIS interacting particles system to the
infinite-dimensional model?

@ What happens when the graph of contacts is not dense?
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A monotonic model

C

Z

(b) Pareto and anti-Pareto front compared to

(a) The kernel the uniform strategies
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