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Introduction 1-D SIS model

Principles of the SIS model

Susceptible⟶ Infected⟶ Susceptible

Infection: Law of mass action (Kermack-McKendrick 1927)
Susceptible individual gets infected at rate proportional to the
concentration of infected people in the population.

Recovery
Infected individual recovers at constant rate.

Example: flu, common cold, gonorrhea…
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Introduction 1-D SIS model

Mathematical formulation of the 1-D SIS Model

The population is constant and is assigned to compartments 𝑆 + 𝐼 = 1 with:

𝑆(𝑡): proportion of susceptible individuals at time 𝑡.
𝐼 (𝑡): proportion of infected individuals at time 𝑡.

Parameters
𝛽 > 0: transmission rate, 𝛾 > 0: recovery rate.

Evolution equation

⎧

⎨
⎩

d𝑆
d𝑡 = −𝑆𝛽𝐼 + 𝛾 𝐼 ,

d𝐼
d𝑡 = 𝑆𝛽𝐼 − 𝛾 𝐼 .
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Introduction 1-D SIS model

Long-time behavior of the solution
Suppose 𝐼 (0) > 0. Then:

if 𝑅0 ≤ 1: lim𝑡→∞ 𝐼 (𝑡) = 0,
if 𝑅0 > 1: lim𝑡→∞ 𝐼 (𝑡) ∶= 𝐼 ∗ = 1 − 1/𝑅0 > 0.

0
0

𝑆(0)

𝐼 (0)

1

𝑡

𝐼 (𝑡)
𝑆(𝑡)

(a) 𝑅0 ≤ 1.

0
0

𝐼 (0)

𝐼 ∗

𝑆(0)
1

𝑡

𝐼 (𝑡)
𝑆(𝑡)

(b) 𝑅0 > 1.

Figure: Convergence of the 1-D SIS model.
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Introduction The Threshold Theorem

1-D SIS model with vaccination

At 𝑡 = 0, a proportion 𝑉 of the population is vaccinated.

We assume that vaccinated individuals are fully immunized to the disease.

The population is assigned to compartments 𝑆 + 𝐼 + 𝑉 = 1 with:

𝑆(𝑡): proportion of susceptible individuals at time 𝑡.
𝐼 (𝑡): proportion of infected individuals at time 𝑡.
𝑉: proportion of vaccinated/immunized individuals, constant over time.

Evolution equation

d𝐼
d𝑡

= (1 − 𝑉 − 𝐼 )𝛽𝐼 − 𝛾 𝐼 .
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Introduction The Threshold Theorem

The Herd Immunity Threshold

Definition
The Herd Immunity Threshold is defined as the critical proportion of the
population that is needed in order to eradicate the disease.

HIT = 1 − 1/𝑅0.

Disease Main Transmission mode 𝑅0 HIT
Measle (Rougeole) Aerosol 12-18 92-95%

Varicella Aerosol 10-12 90-92%
Mumps (Oreillons) Respiratory droplets 10-12 90-92%

Polio Fecal-oral route 5-7 80-86%
Covid-19 Aerosol 3-6 65-85%
Ebola Body fluids 1.5-2.5 30-60%

Table: Values of 𝑅0 and HIT of well-known diseases
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Heterogeneity of the contacts Metapopulation model

Heterogeneity of the population
Individuals do not mix homogeneously

Figure: Contact matrix in an european population (Mossong et al. 2008)
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Heterogeneity of the contacts Metapopulation model

The finite-dimensional SIS model
Lajmanovich and Yorke 1976

Metapopulation assumption
The population is divided into 𝑁 subpopulations labeled {1, 2, … , 𝑁 }.
Individuals within a same subpopulation share the same
characteristics.

Parameters
𝜇𝑖 ∈ (0, 1): proportion of individuals in subpopulation 𝑖.

𝑁
∑
𝑖=1

𝜇𝑖 = 1.

𝛽𝑖𝑗 ≥ 0: transmission rate of the infection from an individual in
subpopulation 𝑗 to an individual in subpopulation 𝑖.
𝛾𝑖 > 0: is the recovery rate the individuals in subpopulation 𝑖.
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Heterogeneity of the contacts Metapopulation model

Subpopulation 𝑖 is assigned with compartments 𝑆𝑖 + 𝐼𝑖 + 𝑉𝑖 with:

𝑆𝑖(𝑡): proportion of susceptible individuals in subpop. 𝑖 at time 𝑡.
𝐼𝑖(𝑡): proportion of infected individuals in subpop. 𝑖 at time 𝑡.
𝑉𝑖: proportion of vaccinated individuals in subpop. 𝑖, constant over time.

Evolution equation

d𝐼𝑖
d𝑡

= (1 − 𝑉𝑖 − 𝐼𝑖)
𝑁
∑
𝑗=1

𝛽𝑖𝑗𝐼𝑗𝜇𝑗 − 𝛾𝑖𝐼𝑖.

Theorem (Lajmanovich and Yorke 1976)
Suppose 𝐼 (0) ≠ (0, 0, … , 0).

If 𝑅𝑒(𝑉 ) ≤ 1: lim𝑡→∞ 𝐼 (𝑡) = (0, 0, … , 0).
If 𝛽 is irreducible and 𝑅𝑒(𝑉 ) > 1: there exists an unique 𝐼 ∗ ∈ (0, 1]𝑁 such
that lim𝑡→∞ 𝐼 (𝑡) = 𝐼 ∗.
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Heterogeneity of the contacts An infinite-dimensional SIS model

Graphon theory
Lovász 2012; Borgs et al. 2018

Question
How to represent the population when 𝑁 → ∞?

0 1
0

1

0 1
0

1

0 1
0

1

Figure: Convergence of a sequence of matrices to a kernel.
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Heterogeneity of the contacts An infinite-dimensional SIS model

Infinite dimensional SIS model

Parameters
(Ω,ℱ , 𝜇): probability space representing the population.

𝑘 ∶ Ω × Ω → ℝ+: kernel representing the transmission rates between the
individuals in the population.

𝛾 ∶ Ω → ℝ+: positive function representing the recovery rate of the
individuals

For 𝑥 ∈ Ω:

𝜈(𝑥): proportion of 𝑥-type individuals who are vaccinated,

𝑢(𝑡, 𝑥): proportion of 𝑥-type individuals who are infected at time 𝑡.

Evolution equation

𝜕𝑡𝑢(𝑡, 𝑥) = (1 − 𝜈(𝑥) − 𝑢(𝑡, 𝑥)) ∫
1

0
𝑘(𝑥, 𝑦)𝑢(𝑡, 𝑦) 𝜇(d𝑦) − 𝛾(𝑥)𝑢(𝑡, 𝑥).
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Heterogeneity of the contacts An infinite-dimensional SIS model

Notation

𝐤 ∶ (𝑥, 𝑦) ↦
𝑘(𝑥, 𝑦)
𝛾 (𝑦)

⋅

Definition (Next-generation operator with vaccination)
The integral operator associated to the kernel (𝑥, 𝑦) ↦ 𝐤(𝑥, 𝑦)(1 − 𝜈(𝑦)) is

𝑇𝐤(1−𝜈)(𝑔) ∶ 𝑥 ↦ ∫
Ω

𝑘(𝑥, 𝑦)
𝛾 (𝑦)

(1 − 𝜈(𝑦))𝑔(𝑦) 𝜇(d𝑦).

Definition
The kernel 𝐤 is said to be connected if for all 𝐴 ∈ ℱ,

∫
𝐴×𝐴∁

𝐤(𝑥, 𝑦)𝜇(d𝑥)𝜇(d𝑦) = 0 ⟹ 𝜇(𝐴) ∈ {0, 1}.
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Heterogeneity of the contacts An infinite-dimensional SIS model

Theorem (Delmas, DD, Zitt)

Suppose an integrability condition on 𝐤 and ∫Ω 𝑢0(𝑥) 𝜇(d𝑥) > 0.
If 𝑅𝑒(𝜈) ≤ 1, then, for all 𝑥 ∈ Ω:

lim
𝑡→+∞

𝑢(𝑡, 𝑥) = 0.

If 𝑅𝑒(𝜈) > 1 then, there exists a greatest equilibrium that is denoted
𝑢∗ = 𝑢∗𝜈 and called the endemic state and satisfies:

∫
Ω
𝑢∗(𝑥) 𝜇(d𝑥) > 0.

If, besides, 𝐤 is connected, then 𝑢∗ is positive almost surely and globally
stable, i.e., for all 𝑥 ∈ Ω:

lim
𝑡→+∞

𝑢(𝑡, 𝑥) = 𝑢∗(𝑥).
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Heterogeneity of the contacts An infinite-dimensional SIS model

Comparison to other results and proof in the literature
Ruan and Xiao 2004; Feng, Huang, and Castillo-Chavez 2005; Thieme 2011; …

Usual assumptions in the literature

Ω ⊂ ℝ𝑑 compact and 𝜇 is the Lebesgue measure
→ general probability space.

𝑘 is continuous and bounded away from 0
→ connectedness and integrability condition on 𝐤.
𝛾 is bounded away from 0
→ 𝛾 positive.

Strategy for the proof
Adapt the theory of order preserving system (Hirsch and Smith 2006).

𝑇𝐤(1−𝜈) is power compact.

Find non-decreasing solution closed to the disease free equilibrium
(thanks to the Krein-Rutman theorem).
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The problem of optimal vaccine allocation
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The problem of optimal vaccine allocation Motivation

The threshold theorem in the infinite-dimensional setting
Overall proportion of vaccinated individuals:

𝐶(𝜈) = ∫
Ω
𝜈(𝑥) 𝜇(d𝑥).

If the population is vaccinated uniformly at level 𝑐 (𝜈(𝑥) = 𝑐, ∀𝑥) then:

𝑅𝑒(𝜈) = 𝜌(𝑇𝑘(1−𝑐)/𝛾) = (1 − 𝑐)𝜌(𝑇𝑘/𝛾) = (1 − 𝑐)𝑅0.

Theorem (Threshold theorem)
Vaccinating a proportion 1 − 1/𝑅0 of individuals uniformly is enough to reach
herd immunity!

Question
Is it possible to reach herd immunity (i.e., 𝑅𝑒(𝜈) = 1) with a proportion 𝐶(𝜈)
of vaccinated individuals smaller than 1 − 1/𝑅0 ?

19 / 35



The problem of optimal vaccine allocation Motivation

Vaccinating according to the endemic state
Proposition (Delmas, DD, Zitt)

Suppose 𝑅0 > 1. Vaccinating according to the endemic state 𝑢∗0 (greatest
equilibrium when nobody is vaccinated) is critical:

𝑅𝑒(𝑢∗0) = 1.

Corollary
Herd immunity can be reached with a proportion of vaccinated individuals

𝐶(𝑢∗0) = ∫
Ω
𝑢∗0(𝑥) 𝜇(d𝑥).

Questions
Is it possible to reach herd immunity with less than 𝐶(𝑢∗0) ?
Compare 𝐶(𝑢∗0) and 1 − 1/𝑅0.
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The problem of optimal vaccine allocation Properties of the problem

Optimal allocation of vaccine doses

If the society has only a limited quantity of vaccine, the decision-maker
could try to solve:

{
Minimize: 𝑅𝑒(𝜈)
subject to: 𝐶(𝜈) = 𝑐.

(1)

We will also be interested in:

{
Maximize: 𝑅𝑒(𝜈)
subject to: 𝐶(𝜈) = 𝑐.

(2)

The set of vaccination strategies:

Δ = {𝜈 ∶ Ω → [0, 1] mesurable}.
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The problem of optimal vaccine allocation Properties of the problem

Short topological digression
Weak topology on Δ:

𝜈𝑛
w
⟶ 𝜈 if, for all 𝑔 ∈ 𝐿∞(Ω):

lim
𝑛→+∞∫

Ω
𝑔(𝑥)𝜈𝑛(𝑥) d𝑥 = ∫

Ω
𝑔(𝑥)𝜈(𝑥) d𝑥.

Δ is compact (Banach-Alaoglu theorem).

The function 𝐶 ∶ Δ → [0, 1] is continuous and increasing.

Lemma (Delmas, DD, Zitt)
The function 𝑅𝑒 ∶ Δ → [0, 𝑅0] is continuous, homogeneous, decreasing.

The proof is based on a result by Anselone 1971 which proves the
convergence of the spectra of a collectively compact and strongly
convergent sequence of operators.
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The problem of optimal vaccine allocation Properties of the problem

Corollary
For all 𝑐 ∈ [0, 1], there exist solution to Problem (1) and a solution to
Problem (2) for a cost 𝐶(𝜈) = 𝑐.
If 𝐤 > 0, the solutions to Problem (1) are Pareto optimal.

If 𝐤 is connected, the solutions to Problem (2) are anti-Pareto optimal.

𝑅⋆𝑒 (𝑐) = max{𝑅𝑒(𝜈) ∶ 𝜈 ∈ Δ, 𝐶(𝜈) = 𝑐}.
𝑅𝑒⋆(𝑐) = min{𝑅𝑒(𝜈) ∶ 𝜈 ∈ Δ, 𝐶(𝜈) = 𝑐},

F = {(𝐶(𝜈), 𝑅𝑒(𝜈)) ∶ 𝜈 ∈ Δ}.

Corollary
The set of possible outcomes is simply connected:

F = {(𝑐, 𝑟) ∶ 𝑐 ∈ [0, 1], 𝑅𝑒⋆(𝑐) ≤ 𝑟 ≤ 𝑅⋆𝑒 (𝑐)}.
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The problem of optimal vaccine allocation Properties of the problem

Another way to measure the efficacy of a strategy

The overall proportion of infected individuals in the endemic state is

𝐼 ∗(𝜈) = ∫
Ω
𝑢∗𝜈 (𝑥) 𝜇(d𝑥).

Lemma (Delmas, DD, Zitt)
The function 𝐼 ∗ ∶ Δ → [0, 𝑅0] is continuous, subhomogeneous and decreasing.

The proof is based on the continuity of 𝑅𝑒 and the fact that 𝑢∗0 is the only
equilibrium that satisfies 𝑅𝑒(𝑢∗0) = 1 when 𝑅0 > 1.

Consequence

There exist solutions to Problems (1) and (2) where 𝑅𝑒 is replaced by 𝐼 ∗.
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The problem of optimal vaccine allocation Properties of the problem

Solving a conjecture by Hill and Longini
Hill and Longini 2003

Recall that:

𝐤(𝑥, 𝑦) ≥ 0, for all 𝑥, 𝑦 ∈ Ω.

if 𝐤 ∈ 𝐿2(Ω × Ω), then 𝑇𝐤 is Hilbert-Schmidt. In particular 𝑇𝐤 is compact.

Hence, 𝑅0 = 𝜌(𝑇𝐤) is an eigenvalue of 𝑇𝐤 (Krein-Rutman theorem).

Theorem (Delmas, DD, Zitt)

Suppose 𝐤 symmetric (i.e., 𝐤(𝑥, 𝑦) = 𝐤(𝑦, 𝑥) almost-surely) and 𝐤 ∈ 𝐿2(Ω × Ω).
If 𝜎(𝑇𝐤) ⊂ ℝ+, then 𝑅𝑒 is convex.
If 𝐤 is connected and 𝜎(𝑇𝐤)\{𝑅0} ⊂ ℝ−, then 𝑅𝑒 is concave.

Remarks:

If 𝑅𝑒 is convex, then 𝑅𝑒⋆ is convex.

If 𝑅𝑒 is concave, then 𝑅⋆𝑒 is concave and 𝐤 is connected.
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Examples Assortativity and disassortativity

A toy model for studying the effect of assortativity
Ω = [0, 1] and 𝜇 is the Lebesgue measure. Consider the kernel:

𝐤 = 𝑎∑
𝑖
𝟙𝐽𝑖×𝐽𝑖 + 𝑏∑

𝑖≠𝑗
𝟙𝐽𝑖×𝐽𝑗 .

𝐽1 𝐽2

(a) Assortative 𝑎 > 𝑏.

𝐽1 𝐽2

(b) Disassortative 𝑎 < 𝑏.

Figure: Grayplot of the kernels.
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Examples Assortativity and disassortativity

Proposition (Delmas, DD, Zitt)
If 𝑎 < 𝑏 (disassortative), then 𝟙[1−𝑐,1) of cost 𝑐 is Pareto optimal.

If 𝑎 > 𝑏 (assortative), then 𝟙[1−𝑐,1) of cost 𝑐 is anti-Pareto optimal.

𝛽(𝑐)
0

𝜇2

𝜇1

0

𝛼(𝑐)

𝜇2

𝜇1

Figure: Representation of the optimal solutions.
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Examples Assortativity and disassortativity

Representation of set of outcomes when 𝜇𝑛 = 2−𝑛 for 𝑛 ≥ 1

0 1/4 1/2 1
0

𝑅0

𝐶

𝑅 𝑒

(a) The assortative case.

0 1/4 1/2 1
0

𝑅0

𝐶
𝑅 𝑒

(b) The disassortative case.

Figure: Set of outcomes F.
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Examples Constant degree kernel

Uniform strategies for constant degree kernels

Definition
𝐤 is a constant degree kernel if 𝑥 ↦ ∫𝐤(𝑥, 𝑦)d𝑦 and 𝑥 ↦ ∫𝐤(𝑦, 𝑥)d𝑦 are
constant.

Proposition
Let 𝐤 be a constant degree kernel.

∇𝑅𝑒(𝜈) is constant when 𝜈 ≡ 𝑐 ∈ [0, 1].
If 𝑅𝑒 is convex, then the uniform vaccination strategies are Pareto optimal.

If 𝑅𝑒 is concave, then the uniform vaccination strategies are anti-Pareto
optimal.

The proof is based on Kloeckner 2019.
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Examples Constant degree kernel

Symmetric regular kernel of rank 2

Ω = [0, 1) equipped with 𝜇 the Lebesgue measure.
Consider the kernels:

𝐤+(𝑥, 𝑦) = 𝑅0 + 𝜃(𝑥)𝜃(𝑦),
𝐤−(𝑥, 𝑦) = 𝑅0 − 𝜃(𝑥)𝜃(𝑦).

where 𝜃 ∶ [0, 1] → ℝ is increasing and satisfies the following conditions:

𝜃(𝑥) = −𝜃(1 − 𝑥) ∀𝑥 ∈ [0, 1], 𝜃(1)2 ≤ 𝑅0.

We have:

𝜎(𝑇𝐤+) = {𝑅0, ‖𝜃 ‖
2
2 , 0}, and 𝜎(𝑇𝐤−) = {𝑅0, − ‖𝜃 ‖22 , 0}.
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Examples Constant degree kernel

Proposition (Solution for the kernel 𝑘+ = 𝑅0 + 𝜃 ⊗ 𝜃)
For all 𝑐 ∈ [0, 1] the uniform vaccination strategies are Pareto optimal.

For all 𝑐 ∈ [0, 1], the strategies 𝟙[0,𝑐) and 𝟙[1−𝑐,1) of cost 𝑐 are anti-Pareto
optimal.

Consequence

For the kernel 𝐤+, we need at least HIT = 1 − 1/𝑅0 to reach herd immunity,
even though the model is heterogeneous!

Proposition (Solution for the kernel 𝑘− = 𝑅0 − 𝜃 ⊗ 𝜃)
For all 𝑐 ∈ [0, 1], the strategies 𝟙[0,𝑐) and 𝟙[1−𝑐,1) of cost 𝑐 are Pareto
optimal.

For all 𝑐 ∈ [0, 1] the uniform vaccination strategies are anti-Pareto
optimal.
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Examples Constant degree kernel

0 1
0

𝑅0

𝐶

𝑅 𝑒

0 1
0

𝑅0

𝐶

𝑅 𝑒
0 1

0

1

𝑥

𝑦

(a) 𝐤+(𝑥, 𝑦) = 1 + cos(𝜋𝑥) cos(𝜋𝑦)

0 1
0

1

𝑥

𝑦

(b) 𝐤−(𝑥, 𝑦) = 1 − cos(𝜋𝑥) cos(𝜋𝑦)
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Examples Constant degree kernel

Uniform vaccination strategies are not always optimal.

0

1

2
3

4

5

6

7

8
9

10

11

(a) The graph.

0 1/2 1
0

𝑅0

𝐶
𝑅 𝑒

(b) Set of outcomes.

The Pareto optimal solution cannot be parametrized greedily.
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End of the talk

Future research

Monotonic kernels (e.g., proportionate mixing/configuration model).

Algorithm to compute the Pareto optimal solutions (greedy algorithm)
and parametrization of the set of Pareto optimal strategies (gradient
flow in 𝐿1).

Convergence of the SIS interacting particles system to the
infinite-dimensional model?

What happens when the graph of contacts is not dense?
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A monotonic model

0 1
0

1

x

y

(a) The kernel

0 1
0

C

R
e

(b) Pareto and anti-Pareto front compared to
the uniform strategies
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